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ABSTRACT

Due to a limited number of accelerometers available for use, the shock
trial for the DDG-51 class destroyer provided a spatially incomplete set of time
history data. However, a visualization of the shock response of the entire ship
is desired. To this end, finite element model reduction methods are employed
to provide a transformation matrix which is used to expand this relatively
small collection of data into the same number of degrees of freedom as the
finite element model. Using this expanded set of time histories, it is possible
to animate the transient response of the structure as a whole.

This approach is investigated using computer-simulated transient
response data from a finite element model of a flat plate. The use of static and
dynamic reduction methods are explored in the creation of the
transformation matrices required for the visualization of the expanded data.
The animations are assessed based on a quantitative comparison with the
full-order transient model response.







Iv.

IS 2301016764 & (0) S
333 150) 3
A.  MATRIX PARTITIONING ..ooooooo
B.  STATIC TRANSFORMATION MATRIX ..
C.  IRS TRANSFORMATION MATRIX ........
D.  VISUALIZATION MATRIX ....ooooovoooeeene |

FINITE ELEMENT FORMULATION

A. INTEGRATION TECHNIQUE ........ccecevureiriiercinnenenas
B.  ELEMENT MATRIX ..o -
1. Elemental Stiffness Matrix ......ccccoeveruceencncnnnce.
2. Elemental Mass Matrix .............. R eeeneneas
COMPUTER SIMULATIONS ......ccoeiiiriecteneneeccnceesensaeensaeses
A.  EXAMPLE (1): TWO DOF IN THE A-SET w.rooovrrro
1. Full-Order Plate Results ........cocovvrnurcinuccnnnnne.
2. Static Transformation Results .....ccccoccevvieucncen.

a. Error Analysis .....ccccoeveevecerenreieieieieiecanns -
3. IRS Transformation Results ........cccoocceeerinicnns
a. Error Analysis ...cccoeemeeeiniieiiieeee
B. EXAMPLE (2): FOUR DOF IN THE A-SET ...................

TABLE OF CONTENTS

vil

.....................

....................

...................

..................

..................

..................

...................

11

11

13

14

17

18

20

21




ANALYSIS...oueveiieeiceeeeeee e
C EXAMPLE (3): A-SET INCLUDES CONSTRAINED
INODES ...ttt e
1 Static Transformation Results ..........co...............
a. Error Analysis .......................... e
2. IRS Transformation Results ............ccccouuen........
a. Error Analysis ......cocevevevueeeeeeeecereerieeeeeenn. '
V. LESSONS LEARNED ..o
A.  ACCURACY DEPENDS UPON THE NUMBER OF
DOF IN THE A-SET ..ottt
B. LOCATION OF THE A-SET IS CRITICAL ....................
ROTATIONS AS PART OF THE A-SET ...
D.  VISUALIZING A STRUCTURE .....coooveevemeeerersrnnnn,
VI. CONCLUSIONS AND RECOMMENDATIONS ..o
A, CONCLUSIONS .....oottrmrimrermreeeeteieeeeeeseeeeesesses oo
B. RECOMMENDATIONS .......oueeeeeeeeeeeeeeeeseeseseeseenn,
APPENDIX A. EXPANDING TIME HISTORIES IN I-DEAS ...
A.  ACCESS I-DEAS SIMULATION INTERFACE

1. IRS and Static Transformation Error

........................................................................

viii

21

23

23

25

26

28

29

29

29

32

32

35

35

36

39

39




B. | ACCESS I-DEAS TEST INTERFACE

SOFTWARE oo
APPENDIXB.  MATLAB CODE oo
A, MAIN FE PROGRAM oo

B.  FUNCTIONS CALLED BY MAIN FE PROGRAM .....

C.  MAIN POST-PROCESSING PROGRAM oo

D. FUNCTIONS CALLED BY MAIN POST-

PROCESSING PROGRAM .......oocumeirircreeeeeeieseeeeennens

LIST OF REFERENCES ...............

INITIAL DISTRIBUTION LIST

..............................................................

..............................................................

X

40

41

41

47

53

58

65

67







O 00T Ul WK =

LIST OF FIGURES

PIate IMOAEL. .ot ee e e eeaeseaesesssnnssnnsnennas

Forcing Function...........cccceeucueeee

Static Response at Node 3..........
Static Response at Node 17........
Static Response at Node 27........

......................................................

.......................................................

.......................................................

Error of Static Reduction Method........c.cooceevverveveeeieeeeeeeeeeeeneeans

IRS Response at Node 3..............
IRS Response at Node 17............
IRS Response at Node 27............

Error of IRS Reduction Method

......................................................

......................................................

Error of Static Reduction Method.......cocovveeeeecvvieieieriveereeesvenserenes

Error of IRS Reduction Method

......................................................

Static Response at Node 10........cououevememmicreeeiieieeieeece e
Static Response at Node 29........covimreiimiieeecne
Error of Static Reduction Method...................... et eaes

IRS Response at Node 10............

IRS Response at Node 29............

Error of IRS Reduction Method

......................................................
......................................................

......................................................

Xi

12
13
15
15
16
17
18
19
19
20
22
22
24
24
25
27
27
28




xii




I. INTRODUCTION

To gain information concerning the transient response of a complex
structure under an arbitrary loading, an analysis of vibration response time
history data is required. Unfortunately, a continuous system has an infinite
number of degrees of freedom from which data can be extracted. Taking
measurements at all of possible locations on the structure is obviously not
feasible due to constraints on time, resources, and money. Because of these

constraints, accelerometers are placed at a few specific locations on a structure

and the data is then analyzed. While this information is quite useful, the
collection of data still does not provide a clear picture of the response at the
many locations where data was not taken. More importantly, since each piece
of data is for a specific location, it takes quite a bit of imagination to get an
understanding of how the structure as a whole is responding to the loading.

Due to the limits on the number of accelerometers available, the shock
trial conducted on the DDG-51 class destroyer provided a spatially incompleté
set of. test data. In addition to the information collected during the test;
knowledge of the transient response at locations on the ship where data was
not taken was desired. By expanding this collection of test data into a spatially
complete set, the transient response could be visualized in a computer
simulation.

This thesis investigates the strengths and weaknesses of expanding
spatially incomplete test data using finite element model reduction methods.
These reduction methods are used to create a transformation matrix which
makes it possible to expand a relatively small collection of simulated test data

into a set that corresponds to a much larger number of degrees of freedom.
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- The transformation matrix is created from a finite element model of the
structure whose system mass and stiffness matrices have been partitioned in
accordance with the locations of the accelerometers on the actual structure.
The final collection of data becomes the time histories of all the coordinates
in the full-order finite element model and has the same number of degrees of
freedom.

The full-order set of data is then animated to create a real-time
visualization of the dynamic response of the structure as a continuous
system. Every column in the expanded matrix is a representation of the
dynamics of each node in the finite element model at a specific time interval.
With this information, a very clear understanding of the vibration response
of a complex structure is possible.

There are two different reduction methods used in this thesis to create
the transformation matrices. The first is the static, or Guyan, reduction and
the second is the Improved Reduced System (IRS) reduction. The IRS
method, while initially more computationally expensive, provides an
improvement because it approximates the inertia forces that are present in a
dynamic problem. A sensitivity analysis for each simulation is provided to

highlight the accuracy of both the static and the dynamic reduction methods.




II. THEORY

A.  MATRIX PARTITIONING
In the physical coordinate system, the expansion of the collected time

history data can be expressed in the following way:

el »

where {x,} is a vector containing the dynamic response data collected from
the structure, {x,} is the response at coordinates other than the data collection
points, and [T] is a non-square transformation matrix used in the expansion
of {x,} to the full-order response set, and [I] is the identity matrix.

The subscript ‘a’ refers to the analysis set of model coordinates, which
.from here on will be called simply the ‘a-set’. This is the set of coordinates in
the model that corresponds to the locations on the structure where data was
taken. Conversely, the subscript ‘0’ refers to the omitted set. This ‘o-set’ refers
to all subsequent model coordinates where data is not taken. By operating on
the ‘a-set’ time history data set with the proper transformation matrix, the ‘o-
set” dynamic response is calculated. ‘

Generally, due to the size of complex models, the a-set system will be
much smaller than the o-set system. The model of a complex structure will
normally contain a huge number of degrees of freedom while the number of
accelerometers is relatively small in comparison.

B. STATIC TRANSFORMATION MATRIX
By partitioning the stiffness relation, f =kx, the static transformation

matrix can easily be found. The equation becomes:

3




Kaa Kzzo xa - fa
b

By taking care to partition the equation such that there are no excitations

applied at the o-set coordinates, then {f,} can be set equal to {0}. Now the

relation between the o-set and a-set response can be expressed as:
{x}=[-KK, [{x} 3)

The static transformation matrix is then [Ref. 1],

T - I
stat —[_K-IK ] (4)

C. IRS TRANSFORMATION MATRIX
The derivation of the IRS reduction transformation matrix begins with

the partitioned equation of motion for a vibrating system [Ref. 2]:
MM Maa ia Kaa K{JO Xa — fa 5
Moa MOO iv + KO‘( KOO xo - fO ( )

Assuming a harmonic motion of frequency, Q, the acceleration term in
equation (5) can be replaced with % =—Q’x. Again partitioning such that there ,
are no excitations at the o-set coordinates, we arrive at the exact structural

dynamics reduction relation [Ref. 3]:




oo oa

{x,}=[1-2K;M, | [-K; K, + Q°K;M,, |{x,} (6)

(a) (b)

Ideally, the desired transformation matrix will be frequency independent and
Eq. (6) is dependent on the driving frequency by the Q* term. Truncating the

binomial expansion of Eq. (6a) after the terms that include Q* yields:

xJ-K:K,, + Q@ &.M,, KM, K K,)l{x,} )

o0 od 0 00 00 oa

The frequency dependency is then eliminated by the following approximation

of the acceleration:
QZ {Xa} = [Mxmt ]_I[Kstat] (8)

where the statically reduced mass and stiffness matrices are given by the

following [Ref. 2,3]:

M.\'tat = T:HIMTS'lat (9a)
K, =T.KT, (9b)

Substitution of Eq. (8) into Eq. (7) provides:
KK, + KoM, - KoM KK M K i) 0)

which is the IRS reduction relationship between the a-set and o-set




coordinates. The IRS reduction transformation matrix can then be written as

[Ref. 2,3]:

(11)

00 oa 00 00 oa stat

I
T’”z[—K“'K +[K;M,, -K;'M, KK M. KJ

D. VISUALIZATION MATRIX

After operating on {x,} with the transformation matrix, the response

for the entire structure is partitioned in the form:

_[x®) [{x,@)} .. {x.¢0)}
{X(’)}_{Xo(f)}-[{xa(ﬁ)} o {Xo(tn)}] (12)

where the columns in the matrix are a representation of the dynamic
response at each node in the model at a specific instant in time. However, this
partitioning does not correspond to the nodes in the model, therefore Eq. (12)
must again be partitioned such that it is in line with the nodes in the model.
To get a real-time visualization of the structure, simply march through the

matrix taking snapshots of the model at each time interval.




IIL. FINITE ELEMENT MODEL FORMULATION

The finite element method used in the creation of the plate model for
this thesis is based on the shear deformable displacement formulation. The
element chosen is the four-noded quadrilateral plate element. Each node in
the model has three degrees of freedom which are the transverse

displacement, w , and the two rotations about the midplane, 8, and 6,. Using

the following bilinear isoparametric shape functions [Ref. 4],

B (&n)=3(1-8)1-) (132)
H(&m)= %(1 +&)(1-n) (13b)
Hy(m) =3 (1+£)(1+ ) (130)
H4(§,77)=%(1—§)(1+n) (13d)
the transverse displacement and slopes are interpolated as:
w= iHi(g’ n)W,- | (14a)
6. = X, H(£n)e.), (140)
0, =3 HEm6,), (140)

These isoparametric shape functions are defined in terms of a normalized
domain -1<£<land -1<n<1.
A. INTEGRATION TECHNIQUE

As previously stated, the shape functions used in this model are for the




bilinear isoparametric element. This type of element was chosen in order to
make the finite element model general in the sense that it can be applied to
any plate geometry. The elements in the physical coordinate system are

mapped into the isoparametric coordinate system by the following relations:

x=Y H{En)x, (15a)

.=l

y= 2 H{&n)y, (15b)

Ji=1

where x and y are physical coordinates corresponding to the nodes in the
element. Gauss-Legendre quadrature is used to perform all integrations.
B. ELEMENT MATRIX

1. Elemental Stiffness Matrix

Without providing the derivation, the elemental stiffness matrix, [K‘],

for plate bending is [Ref. 4]:

s s

[Ke]= -};—3 [BID,B,d2+ ki [B'D,B.dQ (16)
Q° Q°

where h is the thickness of the plate, kequals -2— and is the shear energy

correction factor, Q° is the two dimensional element domain, and

oH, oH oH OH,
B,J={ 0 =X 0 0 Z2 0 o0 10 0 =0 (17)
dy dy dy dy
o, OH, o OH, O,  OH, OH,  JH, OH,
| dy o dy ok dy o d x|




JH JH JoH JoH
-H, 0 =4+ -H, 0 —=* -H, 0 =/ - 0 4
[B ]= 1 a% 2 8&H-x 3 B?_Ix H4 a%x
1o -H Z2 o -H, £z 0 -H, %= o -y, Z
1 &y 2 ay 3 ay 4 ay
(18)
The constitutive equation for the plane stress condition is:
E 1 v 0
[D,]= slv 1 0 (19)
1- -
"lo o 2
2
while the constitutive equation for shear is,
,]=|¢ ° 20
s1™ 0 G ( )

G is the shear modulus, E is the modulus of elasticity, and v is Poisson’s
ratio. One thing of importance to be noted about Eq. 15 is that the shear energy
becomes dominant over the Bending energy as the thickness of the plate
becomes small relative to the side length. This is called shear-locking. To
account for this problem, a reduced integration technique is used. The
bending term is integrated exactly using 2x2 Gauss—Legendre quadrature while
the shear term is under-integrated using 1x1 Gauss-Legendre quadrature.

2. Elemental Mass Matrix

The elemental mass matrix is found by simply integrating the properly
weighted shape functions. The general equation for determining this matrix

is:




[M7]= [ pa

foXd

[H H, H, HJdQ (21)

ol IR s

In Eq. (19), P is the density of the plate element, A is the elemental area, and
[H] is the same shape functions as in Eq. (12). 2x2 Gauss-Legendre quadrature

is used to perform all integrations for the element mass matrix.
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IV. COMPUTER SIMULATIONS

The investigation of expanding time history data was conducted with
the aid of computer simulations. The dynamic response at each node of a
plate finite element model was used to simulate the ‘actual’ solution. From
this baseline model, an a-set system of time histories was chosen which is
assumed to be the data taken from an actual structure. The system matrices in
the finite element model were then partitioned in order to create the
transformation matrix required to expand the a-set time histories to full-
order. By comparing the dynamic response of the finite element model to the
response found by expanding the a-set system,. the validity of the process
could be studied and verified.
A. EXAMPLE (1): TWO DOF IN THE A-SET

The initial simulations are conducted on a square, flat plate (see Figure
1) comprised of twenty-five elements and thirt;r-six nodes. Degrees of freedom
42 and 87 are assumed to be the ‘actual’ response and therefore make up the a-
set system. Conversely, the o-set system is comprised of all other DOF. The
two DOF in the a-set system correspond to the transverse motion at nodes 14
and 29. The external force is a blast function (see Figure 2) applied at node
twenty-one. Each external spring has a stiffness equal to 1000 Ib-in and is
attached to the ground. |

Two separate simulations are performed using this plate and a-set

system. The first simulation uses the static transformation matrix to expand

11




the a-set and the second uses the IRS. Both are then compared to the full-
order plate response. Unfortunately, it is impossible to show the visualization

on paper so the comparison will be on a per DOF basis.

>

k
31 32 33 34 35 36
25 26 27 28 * 29 30
19 20 rm 22 23 24
13 14 15 16 17 18
7 8 9 10 11 12
20in.
1 2 3 4 5 6
>

20in.

Figure 1 Plate Model
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Figure 2 Forcing Function

1. Full-Order Plate Results

The dynamic response of the full-order plate model was solved by

transforming the general equation of motion,

[MK}+[KKx}={f )} (22)

into modal coordinates by the following relation:

13




()} = [¢]{q(t)} (23)

in which {q(t)} is the modal displacements (as a function of time) and [¢] is a
matrix of mass normalized modeshapes found from solving the typical

structural dynamics eigenvalue problem:

[K—wa]{q)} ={0} | (24)

The modal displacements are found by numerically solving a convolution
integral [Ref. 5]. The damping in the plate is assumed to be 2% and is inserted
‘into the integral calculation. Once {q (1)} is found, Eq. (21) is then used to
convert back to the physical coordinate system.
Now, the time history at every node in the plate is known. These results will
be used to compare the accuracy of the static and dynamic expansions of the a-
set.

2. Static Transformation Results

Figures III, IV, and V are per-node samples of the full-order plate
model response in comparison to the response found by the static expansion
of the 2 DOF a-set. It is clear that the static transformation will provide an
adequate approximation of the ‘true’ response at certain nodes.
Unfortunately, Figure 3 proves that the difference between the “true’ solution

and the expanded set can be greater than 50%.
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Time History at Node 27
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Figure § Static Response at Node 27

Having errors of this magnitude can lead to very misleading results in
the final visualization. It will provide an idea of how the structure vibrates
but the animation is distorted and skewed. If a more accurate representation
is the reciuirement, then other steps must be taken. Obviously, one way to get
a more accurate solution is to increase the size of the a-set system. An
example solution of the larger a-set is provided later. The drawback to this is
more data must be taken which is oftentimes impossible due to limits on the
number of accelerometers available. Another way to change the accuracy of
the solution is to alter the locations where the data is actually taken on the

structure. An example is also provided later in this chapter of greatly
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decreasing the accuracy of the static solution by choosing an a-set system
badly.

a. Error Analysis

To understand the differences in the full-order and static plate
solutions without providing the time histories at every node, a sensitivity

analysis was conducted.

Sensitivity Analysis Befween Static and Full-Order Response

02~ LT

Figure 6 Error of Static Reduction Method

note: Figure is orientated such that the 0/0 point is node 1

The largest difference between the full-order plate response and
the expanded time history set was found and plotted. This analysis is

essentially a ‘worst-case’ scenario because the code searched through time to
17 |




find the absolute maximum error at each node and these errors did not
always occur at the same instant in time.

The maximum differential appears to be approximately 0.1
inches, but the movement of the plate is only about 0.3 inches. Under these
circumstances, an error of this magnitude is quite significant, and therefore
the static reduction probably should not be used.

3. IRS Transformation Results
Using the existing plate model and forcing function (see Figures 1 and
2), the solution for the IRS expanded data is provided as before. The same

nodes are given as samples here:

Time History at Node 3
0.3 i T ] i L

Displacement (in)
o

1.5
Time (sec)

Figure 7 IRS Response at Node 3
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Time History at Node 17
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Figure 8 IRS Response at Node 17
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These figures show that the IRS expanded data is much more accurate

in comparison to the static transformation. Even with an a-set of only 2 DOF

out of the possible 108, the IRS transformation provides a 'very good solution.

Clearly, the correction in the IRS transformation matrix due to inertial forces
will improve the accuracy of the solution immensely.

a. Error analysis

A sensitivity analysis for the IRS expanded data is also provided:

Sensitivity Analysis Between IRS and Full-Order Response

[t

Response Differential (i

Figure 10 Error of IRS Reduction Method
note: Figure is orientated such that the 0/0 point is node 1
The maximum difference in Figure 10 is less than 0.02 inches.

This accuracy is an order of magnitude better than the static reduction. The

20




approximation of the inertial forces inherent in the IRS transformation
matrix appears to work quite well.
B. EXAMPLE (2): FOUR DOF IN THE A-SET

This example shows that the accuracy in both solutions can be greatly
improved by increasing the size of the a-set. By merely increasing the size of
the a-set by two, it will be seen that the improvement in accuracy is at least an
order of magnitude. As mentioned earlier, although desirable, increasing the
number of data points may not be feasible.

For this simulation, the forcing function used is the same as in
Figure 2. The plate model, shown in Figure 1, is changed such that the data is
instead extracted at nodes 8, 11, 26, and 29. In the transverse direction, these
nodes correspond to degree of freedom 24, 33, 78, and 87. All other variables
in the simulation are unchanged.

On a per node basis, the results are very hard to comprehend because
the graphs are almost exactly'on top of each other. For the IRS expanded data,
no difference can be detected. Because of this, only the sensitivity analysis is
provided.

1. IRS and Static Transformation Error Analysis

By viewing these graphs, it becomes clear how the accuracy can by
greatly increased by adjusting the number of DOF in the a-set system. The

greatest difference in inches of the response for the static solution is 0.01.
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Sensitivity Analysis Between Static and Full-Order Response
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note: Figures are orientated such that the 0/0 point is node 1
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The difference for the IRS solution is much smaller at 0.00015 in. As expected,
the IRS reduction method remains the more accurate of the two, but both
methods prow}ide very good solutions. If the visuaiization could be shown
here, one would not be able to discern a difference between the two
animations and the ‘true’ solution.
C. EXAMPLE (3): A-SET INCLUDES CONSTRAINED NODES

For this simulation, the accelerometers are assumed to be located at
nodes which are constrained to ground through external springs. For the
plate, these nodes are numbered 1, 6, 31, and 36. The corresponding DOF’s in
the a-set system are 3, 18, 93, and 108, respectively.

1. Static Transformation Results

Figures 13 and 14 are a sampling of the results from this particular
simulation and they show a very interesting situation to consider. These time
history samples cléarly indicate that the static transformation matrix will not
provide an accurate solution for this I:;articular a-set. On closer inspection of
the two previous graphs, it is seen that the static transformation provided the
exact same solution at nodes 10 and 29. In fact, although not shown, this is the
exact response calculated at every node in the plate, and, when placed in
animation, the plate exhibits rigid body motion in the transverse direction.

The reason for this rigid body motion can be attributed to the location
of the a-set system. By taking time history data at only those nodes

constrained to ground through springs, the transformation matrix imparts
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Time History at Node 29

0-3 L) i ¥ T

VY
t A Pl
0.2F ’ kY s \
! y _/ \
! A ’ A}
i .‘ I' ]
- i A ) \
é 0.1 —.I 1 l. .! 1
— 1 |} .l. r s
[ ] [} ’ \ ]
g ! \ / _ \ i
o y e o A Boen

8 0] H A : ...... ;

\ 1 \ 1
K [y ! 1 !
% 0.1 \ i A i
- - Al I b Y '
a . L v

Static: - \ s v
M 4 N b
. \ ’ \ s
-0.2| Model: -. A -
N
! ! !

_______

|
0 0.5 1 15 2
Time (sec)

Figure 14 Static Response at Node 29

24




the strain energy of the springs to the system and ignores any of the plate’s
internal strain energy. In other words, the response célculated in the o-set is
effectively ‘zeroed out’ by the transformation matrix. By discarding the
motion of the individual o-set nodes, the plate moves with the springs as a

rigid body. A detailed explanation of this behavior is provided in the next

chapter.
a. Error analysis
The inaccuracy of the solution becomes clear with the sensitivity
analysis.
Sensitivity Analysis Between Static and Full-Order Response
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Figure 15 Error of Static Reduction Method

note: Figure is orientated such that the 0/0 point is node 1
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Obviously, rigid body motion is an inaccurate solution to this
situation. As expected, the nodes at the four corners exhibit no error while the
center of the plate has the greatest. From Figure 13, the maximum amplitude
of the plate motion is about 0.3 in. which is the same as the maximum error
shown here. Example (2) proved that a very accurate solution can be found
using the static reduction method when the a-set contains four DOF. This
example shows that care must be taken when using the static reduction
method that the accelerometers are not placed at constrained nodeé.

2. IRS Transformation Results

The problems using the static reduction method are not exhibited by
the IRS method. Due to the correction in the derivation of the
transformation matrix due to the inertial forces, the motion of the plate is
taken into account. For this reason, the actual response of the plate is
célculated.

The following time history samples prove the usefulness of the IRS
reduction method when data must be taken at nodes constrained to ground

through a spring:
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a. Error analysis

Figure 18 ‘has the same basic shape as Figure 15, but the
maximum error this time is only 0.02 in. The inertial force correction to the
IRS transformation matrix enables a very accurate solution to be found even

though the strain energy of the plate is ignored. For this reason, using the IRS

method allows for fewer limitations in the location of the a-set system.

Sensitivity Analysis Between IRS and Full-Order Response
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Figure 18 Error of IRS Reduction Method

note: Figures are orientated such that the 0/0 point is node 1
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V. LESSONS LEARNED

The three examples provided in the previoué chapter are only a few of
the simulations conducted in the investigation of expanding spatially
incomplete time histories to full-order. Several other situations requiring
investigation were checked and will be addressed here. This chapter
highlights the lesson’s learned from all the computer simulations without
providing the detail seen previously.

A. ACCURACY DEPENDS UPON THE NUMBER OF DOF IN THE A-SET

As expected, the number of DOF in the a-set system greatly affects the
accuracy of the solution. The increase in accuracy seen in changing the a-set
system from Example (1) to Example (2) is excellent proof of this. Actually, a
dramatic improvement could be seen by increasing the number of DOF in the
a-set to three. Interestingly, independent of the size, shape, or number of DOF
in the model, a system of only one DOF in the a-set did not provide a viable
solution for either method. Therefore the minimum number of DOF in the
a-set is restricted to two. Simulations were not run for situations where the
number is greater than four because, as seen in Example (2), an a-set
containing four DOF expands into a solution that is essentially exact.

B. LOCATION OF THE A-SET IS CRITICAL

In additioﬁ to the number of DOF, the accuracy of the solution can be

greatly affected by the location of the a-set. Two general cases have been found

that should be taken into account. The first is to pick an a-set location that is
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certain to impart strain energy into the transformation matrix in order to
avoid the rigid-body modes. This restriction is of vital importance if the static
reduction is chosen. The second is to ensure that the time history data is
taken at points ‘distant’ from one another.

Example (3) revealed a problem with the static reduction method when
the nodes chosen for the a-set are constrained. As mentioned earlier, the
reason is that the only strain energy imparted into the system is the stiffness
of the springs while the internal strain energy of the plate is ‘zeroed out’.
Mathematically, this idea can be represented by first partitioning the stiffness

matrix in the following manner:

(25)

)<

Kl +K;, K”
K., K

where the superscript p is used to indicate the plate and s refers to the

springs. Let x be a displacement vector that imparts no internal strain energy.

This now defines the a-set and the o-set. Further partitioning of Eq. (23) yields:

K? K? |[x, K, 0]|x,
- e le o) e

Now, applying Eq. (24) to the general stiffness relation, f = kx, the following

relation between the a-set and the o-set is derived much in the same manner
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as Eq. (3):

{x,} =Kz ] [K2){x.} 27)

By condénsing the stiffness of the grounded springs out of the static
transformation equation, the o-set exhibits the response of an unrestrained
structure. The rigid body motion exhibited in Example (3) is a result of the
stiffness matrix being partitioned in this manner.

A problem that affects the accuraby of both the static and IRS reduction
methods is choosing the a-set system at points that are ‘too close’ together. In
this situation, common sense must be depended upon because the concept of
‘close’ and ‘far’ depends on fhe size and geometry of the structure. Several
simulations were conducted to study this and the best solution is simply to
ensure the accelerometers are spread out to locations that best cover the entire
structure. Having said this, it is important that the a-set include locations
where the motion of the structure has the greatest amplitude. In the case of
the plate model, the amplitude of the vibration is greatest at the center of the
plate so the a-set should include time-history information from this area. A
simulation was run where the a-set was comprised of edge nodes. The plate
moves very little at its edges and subsequently the solution was inaccurate for
both methods. Sound engineering judgment must be employed when

choosing an a-set because it is critical to getting an accurate solution.
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C. ROTATIONS AS PART OF THE A-SET

In general, using rotations, or a combination of rotations and
translations as part of the a-set does not seem to alter the accuracy of the
solution. The same rules apply for rotations as for the transverse |
displacements. A larger a-set still returns a more accurate sblution and the
lbcation is still important. In this situation, however, being closer to the edge
produced more accurate solutions. This makes sense because the edges are the
locations of the largest rotations. Using rotations in the a-set is an advantage
if applying the static reduction method because there is no longer a restriction
on the use of nodes constrained through translational springs.

While using rotations is not a problem computationally, care must be
taken to ensure that the structure is rotating along the axis corresponding to
the chosen DOF. If not, including these DOF in the a-set serves no purpose as
no strain energy is imparted into the system and the plate will again exhibit
rigid body motion.

D.  VISUALIZING A STRUCTURE

Animation in MATLAB is very computer memory intensive. A
simple structure such as the plate can tax the memory of most computers and
cause the program to crash. As such, a very large structure, or one with many
nodes, would be almost impossible to visualize. To aid in overcoming this
problem, the code should direct the computer to reduce the size of the
graphics window for the animation. Although this does not allow for as nice

a {fisualization, memory is saved for computation instead of being allocated
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to the graphics window. By doing this, the visualization can be of longer

duration thereby resulting in a better understanding of the dynamics of the
structure.

A better tool to use in perfornﬁng a dynamic visualization is I-DEAS.
Unfortunately, certain versions will not allow the user to expand time
histories. An outline can be found in the appendix that describes the steps

needed to perform an animation in I-DEAS.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The main objective of this thesis was to investigate the process of
visualizing transient structural response by expanding spatially incomplete
time history data to full-order. The response at every node of a full-order
plate model was solved which provided a base model for comparison. From
this collection of nodal responses, a few of the time histories were extracted
which simulated the experimental data taken from an actual structure. After
chooSing the a-set, the finite element system matrices were partitioned to
calculate the appropriate transformation matrix. The expanded data was then
compared to the full-order response in the effort of evaluating the accuracy of
the process.

A. CONCLUSIONS
The simulations have shown the following:

1. To get an accurate solution, the minimum number of DOF’s allowed
to make up the a-set system on a flat plate is two. Provided the
accelerometers are properly placed, an a-set comprised of four DOF
will produce a very accurate response for both the static and the IRS
methods.

2. The placement of the accelerometers is very important. If the static
reduction method is chosen, the data must be taken at nodes certain

to produce internal strain energy. Regardless of method, the data
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must be extracted at locations ‘far’ enough from each other to get a
sample of the entire structure, and the data collector should try to
pick points on the structure where vibration is greatest.

3. The same restrictions that épply to using translations in the a-set can

be applied to rotations.

4. The visualization process is very memory intensive therefore clever

programming is required to maximize the memory available for
graphics.

Visualizing transient response provides a unique insight on the
motion of a vibrating structure. A much better understanding of the
dynamics is gained when a designer can visualize the motion of a spatially

~complete body instead of the time histories of a few select nodes.
B. RECOMMENDATIONS

This study outlines a few of the strengths and weaknesses inherent to
the Guyan and IRS reduction methods in the attempt to animate transient
response. While many simulations were explored, the investigation was
rather limited in scope. In addition to the Guyan aﬁd IRS methods, there are
many reduction methods that could be explored. To validate the process,
experimental data must be loaded into the program and studied. A similar
study should be directed towards visualizing the response of three
dimensional structures. In addition, it would be useful to investigate

animating transient response in six degrees of freedom.
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The accuracy of this process is heavily dependent on the location of the

a-set. There are analytical techniques available that help find the ‘best” a-set
but ordinarily these are used when applying model reduction methods to find
modeshapes. These techniques should to be investigated to prove if they can
also be applied to this process. |

The motivation for this thesis will be realized when the time history
data of the DDG-51 class shock trial is loaded into I-DEAS, expanded to full-

order, and then animated in a transient response visualization.
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APPENDIX A. EXPANDING TIME HISTORIES IN I-DEAS

Step-by-step procedures for expanding transient time history data using
I-DEAS software is provided. This option is not available using I-DEAS
Master Series 3 if the software is set up to run on Hewlett-Packer computers.
A. ACCESS I-DEAS SIMULATION INTERFACE SOFTWARE

1. Master Modeler/Surfacing Task - load /build FE model

2. Meshing Task - mesh model and enter material properties

3. Boundary Condition Task -

a. Choose normal mode dynamics
b. Apply restraints
c. Create boundary condition set/Choose normal mode
dynamics - Guyan
d. Choose analysis set (a-set)
* 4. Model Solution Task
a. Create solution set
b. Initiate solve
c. Access I-DEAS model response software
5. Model Response Software
a. Excitation definition
- Create force/displacement excitation function in time

domain
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b. Response Evaluation
- Create response set
- initiate solve
c. Save transient response at a-set dof to a file called ‘name.unv’
B. ACCESS I-DEAS TEST INTERFACE SOFTWARE
1. Correlation Task
a. import ‘name.unv’ file and change to an Attached Data File
(ADF) called ‘name.ash’
b. select mode shape to work with
- choose ‘name.ash’
- select substructure component
2 Post-Processing Task
a. start animation
note: if using experimental data, once solve is initiated in the Simulation
Interface Software, the Guyan transformation matrix is created. Proceed

directly to Test Interface and load the .unv file of a-set time histories
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A.

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

APPENDIX B. MATLAB CODE

MAIN FE PROGRAM

Program will solve for the system mass and stiffness
matrices of a plate. It uses four-node isoparametric
elements of the shear-deformable displacement
formulation. The system mass and stiffness matrices
are saved to a file called sys_mat.mat

Written by Scott Waltermire

Based on EX1071.m
Prof. Young Kwon

%
%

% Variable descriptions

%
%
%
%
%
%
%
%
%
o
%
%
%
%
%
%
%
%
%
%o
%
%
%
%%

k = element matrix

kb = element matrix for bending stiffness

ks = element matrix for shear stiffness

f = element vector

kk = system matrix

ff = system vector

disp = system nodal displacement vector

gcoord = coordinate values of each node

nodes = nodal connectivity of each element

index = a vector containing system dofs associated with each element

pointb = matrix containing sampling points for bending term

weightb = matrix containing weighting coefficients for bending term

points = matrix containing sampling points for shear term

weights = matrix containing weighting coefficients for shear term

bedof = a vector containing dofs associated with boundary conditions

beval = a vector containing boundary condition values associated with
the dofs in 'bedof’

kinmtpb = matrix for kinematic equation for bending

matmtpb = matrix for material property for bending

kinmtps = matrix for kinematic equation for shear

matmtps = matrix for material property for shear
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%

% mput data for control parameters

%

clear

hplate=100; % height of plate
Iplate=100; % length of plate
hele=20; % element height
lele=20; % element length

a_ele=hele*lele;
nel=25;

nnel=4;

ndof=3;
nnode=36;
sdof=nnode*ndof;
edof=nnel*ndof;
emodule=30e6;
rho=0.284/386.4;
poisson=0.3;
t=0.125;

nglxb=2; nglyb=2;
nglb=ngixb*nglyb;
nglxs=1; nglys=1;
ngls=nglxs*nglys;

%o

% element area

% number of elements

% number of nodes per element

% number of dofs per node

% total number of nodes in system

% total system dofs

% degrees of freedom per element

% elastic modulus

% density

% Poisson's ratio

% plate thickness

% 2x2 Gauss-Legendre quadrature for bending

% number of sampling points per element for bending
% 1x1 Gauss-Legendre quadrature for shear

% number of sampling points per element for shear

% input data for nodal coordinate values
% gcoord(i,j) where i->node no. and j->x and y

% size(gcoord) = num_nodes x 2

%

% note: if the elements used are not rectangular

% in shape, the values of gcoord and nodes

%

must be manually entered by the user

%

count=0;
x = O:lele:lplate;
y = O:hele:hplate;

gnode = zeros(length(y),length(x));
gcoord=zeros(length(x)*length(y),2);

for n=1:length(y)
for j=1:length(x)
count = count+1;

gcoord(count,1:2) = gcoord(count,1:2) + [x(j) y(n)I;
gnode(n,j) = gnode(n,j)+count;

end
end
end
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%

% nodes is the nodal connectivity of the model
%o applied in the counter-clockwise direction

%

nodes=(];
count=0;
for n=1:length(y)-1
~ for j=1:length(x)-1
count = count+1;
node(count, 1:4)=[gnode(n,j) gnode(n,j+1) gnode(n+1,j+1) gnode(n+1,j)];
nodes = [nodes;node(count,1:4)];

end

end
%
% initialization of matrices and vectors
%
ff=zeros(sdof,1); % system force vector
kk=zeros(sdof,sdof); % system k matrix
mm = zeros(sdof,sdof); % system m matrix
disp=zeros(sdof,1); % system displacement vector
index=zeros(edof,1); % index vector
kinmtpb=zeros(3,edof); % kinematic matrix for bending
matmtpb=zeros(3,3); % constitutive matrix for bending
kinmtps=zeros(2,edof); % kinematic matrix for shear
matmtps=zeros(2,2); % constitutive matrix for shear
%

% computation of element matrices and vectors and their assembly
%0

%

% for bending stiffness

%

[pointb,weightb]=feglqd2(nglxb,nglyb); % sampling points & weights
matmtpb=fematiso(1,emodule,poisson)*t*3/12; % bending material property
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%
% for shear stiffness

%

[points,weights]=feglqd2(nglxs,nglys); % sampling points & weights
shearm=0.5*emodule/(1.0+poisson); % shear modulus

shcof=5/6; % shear correction factor
matmtps=shearm*shcof*t*[1 0; 0 1]; % shear material property

for iel=1:nel % loop for the total number of elements
for i=1:nnel :

nd(i)=nodes(iel,i); % extract connected node for (iel)-th element
xcoord(i)=gcoord(nd(i),1); % extract x value of the node
ycoord(i)=gcoord(nd(i),2); % extract y value of the node

end

k=zeros(edof,edof); % initialize element stiffness matrix to zero
m=zeros(edof,edof); % initialize element mass matrix to zero
kb=zeros(edof,edof); % initialization of bending matrix to zero
ks=zeros(edof,edof); % initialization of shear matrix to zero

%

% numerical integration for bending term

%

for intx=1:nglxb :

x=pointb(intx,1); _ % sampling point in x-axis
wtx=weightb(intx,1); % weight in x-axis

for inty=1:nglyb '

y=pointb(inty,2); % sampling point in y-axis
wty=weightb(inty,2) ; % weight in y-axis
[shape,dhdr,dhds]=feisoq4(x,y); % compute shape functions and

% derivatives at sampling point

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord); % compute Jacobian

detjacob=det(jacob2); % determinant of Jacobian
invjacob=inv(jacob2); % inverse of Jacobian matrix
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.

% physical coordinate
kinmtpb=fekinepb(nnel,dhdx,dhdy); % bending kinematic matrix
%

% compute bending and mass element matrix
%
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kb=kb-+kinmtpb*matmtpb*kinmtpb*wtx*wty*detjacob;

%

%o Create a matrix of shape functions: Q

% Ensure each row vector in the matrix is properly weighted: H(i)
%

Q = [shape(1) 0 0 shape(2) 0 0 shape(3) 0 0 shape(4) 0 0;...
0 shape(1) 0 0 shape(2) 0 O shape(3) O O shape(4) 0;
0 O shape(1) 0 0 shape(2) O O shape(3) 0 0 shape(4)];

H1 = shape(1)*Q;

H1 = [1/12*rho*t"3*H1(1,:);1/12*tho*t"3*H1(2,:);rtho*t*H1(3,:)];

H2 = shape(2)*Q;

H2 = [1/12*rho*t"3*H2(1,:); 1/12*tho*tA3*H2(2,:);tho*t*H2(3,:)];

H3 = shape(3)*Q;

H3 = [1/12*rho*t*3*H3(1,:);1/12*rho*t"3*H3(2,:);tho*t*H3(3,:)];

H4 = shape(4)*Q;

H4 = [1/12*rho*t"3*H4(1,:);1/12*tho*t*3*H4(2,:);tho*t*H4(3,:)];

% Create the elemental mass matrix in terms of shape functions

H = [H1;H2;H3;H4];
%

% Solve for the elemental mass matrix
% .

m = m+H*wtx*wty*detjacob;

end

end % end of numerical integration loop for bending term
% and mass term

%

% numerical integration for shear term
%o

for intx=1:nglxs
X=points(intx,1);
wtx=weights(intx,1);
for inty=1:nglys
y=points(inty,2);
wty=weights(inty,2) ;

[shape,dhdr,dhds]=feisog4(x,y);

jacob2=fejacob2(nnel,dhdr,dhds,xcoord,ycoord);
45

% sampling point in x-axis
% weight in x-axis

% sampling point in y-axis
% weight in y-axis

% compute shape functions and
% derivatives at sampling point

% compute Jacobian




detjacob=det(jacob2); % determinant of Jacobian

invjacob=inv(jacob2); % inverse of Jacobian matrix
[dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob); % derivatives w.r.t.

% physical coordinate
kinmtps=fekineps(nnel,dhdx,dhdy,shape); % shear kinematic matrix
%
% compute shear element matrix
%

ks=ks+kinmtps"*matmtps*kinmtps*wtx*wty*detjacob;

end

end % end of numerical integration loop for shear term

%

% compute element matrix

%

k=kb+ks;

index=feeldof(nd,nnel,ndof); % extract system dofs associated with element
kk=feasmbl1(kk k,index); % assemble element matrices into system
mm=feasmbl 1(mm,m,index); % matrices

end

% Apply Springs in z-direction
kk(3,3) = kk(3,3) + 100;

kk(18,18) = kk(18,18) + 100;
kk(93,93) = kk(93,93) + 100;
kk(108,108) = kk(108,108) + 100; -

save sys_mat mm kk
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B. FUNCTIONS CALLED BY MAIN FE PROGRAM

function [point2,weight2]=feglqd2(nglx,ngly)

%
% Purpose:

%  determine the integration points and weighting coefficients
%  of Gauss-Legendre quadrature for two-dimensional integration
%

% Synopsis:

% [point2,weight2]=feglqd2(nglx,ngly)

%

% Variable Description:

% nglx - number of integration points in the x-axis
% ngly - number of integration points in the y-axis
%  point2 - vector containing integration points

% weight2 - vector containing weighting coefficients
%

% determine the largest one between nglx and ngly

if nglx > ngly
ngl=nglx;
else
ngl=ngly;
end

% initialization

point2=zeros(ngl,2);
weight2=zeros(ngl,2);

% find corresponding integration points and weights

[pointx,weightx]:feglqdl(ngli(); % quadrature rule for i-axis
[pointy,weighty]=feglqd1(ngly); % quadrature rule for y-axis

% quadrature for two-dimension

for intx=1:nglx % quadrature in x-axis
point2(intx, 1 )=pointx(intx);
weight2(intx, 1)=weightx(intx);

end '

for inty=1:ngly % quadrature in y-axis

point2(inty,2)=pointy(inty);
weight2(inty,2)=weighty(inty);
end
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function [matmtrx]=fematiso(iopt,elastic,poisson)

%

% Purpose:

%  determine the constitutive equation for isotropic material

%

% Synopsis:

%  [matmtrx]=fematiso(iopt, elastlc,p01sson)
%

% Variable Description:

% elastic - elastic modulus

%  poisson - Poisson's ratio

%  iopt=1 - plane stress analysis

%  iopt=2 - plane strain analysis

%  iopt=3 - axisymmetric analysis

%  iopt=4 - three dimensional analysis

%

if iopt== % plane stress
matmtrx= elastlc/(l—p01sson*p01sson)*
[1 poisson O; .
poisson 1 O;.
00 (1—p01sson)/2]

elseif 1opt-—2 % plane strain

matmtrx= elastlc/((l+ oisson)*(1-2*poisson))* ...
P p

[( 1-p01sson) poisson 0;
poisson (1-poisson) 0;
0 O (1-2*poisson)/2];

elseif iopt==3 % axisymmetry

matmtrx= elastlc/(( l+p01sson)*(l -2*poisson))* ...

[(1-poisson) poisson poisson 0;
poisson (1-poisson) poisson O;
poisson poisson (1-poisson) O;
0 0 O (1-2*poisson)/2];

else % three-dimension

matmtrx= elastlc/((1+p01sson)*( 1-2*poisson))* ...

[(1-poisson) poisson poisson 0 O O;
poisson (1-poisson) poisson 0 0 O;
poisson poisson (1-poisson) 0 0 O;
0 0 0 (1-2*poisson)/2 0 O;
0 0 0 O (1-2*poisson)/2 O;
0 0 0 0 O (1-2*poisson)/2];

end
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function [shapeq4,dhdrq4,dhdsq4]=feisoqé(rvalue,svalue)

%
% Purpose:

%  compute isoparametric four-node quadilateral shape functions
%  and their derivatves at the selected (integration) point

%  in terms of the natural coordinate

%

% Synopsis:

%  [shapeq4,dhdrg4,dhdsq4]=feisog4(rvalue,svalue)

%

% Variable Description:

% shapeq4 - shape functions for four-node element

%  dhdrg4 - derivatives of the shape functions w.r.t. r

%  dhdsq4 - derivatives of the shape functions w.r.t. s

% rvalue - r coordinate value of the selected point

% svalue - s coordinate value of the selected point

%

% Notes:

% 1stnode at (-1,-1), 2nd node at (1,-1)

%  3rd node at (1,1), 4th node at (-1,1)

%

% shape functions

shapeq4(1)=0.25*(1-rvalue)*(1-svalue);

shapeq4(2)=0.25*(1+rvalue)*(1-svalue);
shapeq4(3)=0.25*(1+rvalue)*(1+svalue);
shapeq4(4)=0.25*(1-rvalue)*(1+svalue);

% derivatives

dhdrg4(1)=-0.25*(1-svalue);
dhdrg4(2)=0.25*(1-svalue);

dhdrg4(3)=0.25*(1+svalue);
dhdrq4(4)=-0.25*(1+svalue);

dhdsq4(1)=-0.25*(1-rvalue);
dhdsq4(2)=-0.25*(1+rvalue);
dhdsq4(3)=0.25*(1+rvalue);
dhdsq4(4)=0.25*(1-rvalue);
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function [jacob2]=fejacob2(nnel,dhdr,dhds,xcoord,ycoord)

%

% Purpose:

%  determine the Jacobian for two-dimensional mapping
%

% Synopsis:

%  [jacob2]=fejacob2(nnel,dhdr,dhds,xcoord,ycoord)

% .

% Variable Description:

%  jacob2 - Jacobian for one-dimension

~ % nnel - number of nodes per element

%  dhdr - derivative of shape functions w.r.t. natural coordinate r
%  dhds - derivative of shape functions w.r.t. natural coordinate s
%  xcoord - x axis coordinate values of nodes

%  ycoord - y axis coordinate values of nodes

%

jacob2=zeros(2,2);

for i=1:nnel
Jacob2(1,1)=jacob2(1,1)+dhdr(i)*xcoord(i);
jacob2(1,2)=jacob2(1,2)+dhdr(i)*ycoord(i);
Jjacob2(2,1)=jacob2(2,1)+dhds(i)*xcoord(i);
jacob2(2,2)=jacob2(2,2)+dhds(i)*ycoord(i);
end

function [dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob)

%
% Purpose:

%  determine derivatives of 2-D isoparametric shape functions with
%  respect to physical coordinate system

%

% Synopsis:

%  [dhdx,dhdy]=federiv2(nnel,dhdr,dhds,invjacob)

%

% Variable Description:

%  dhdx - derivative of shape function w.r.t. physical coordinate x
%  dhdy - derivative of shape function w.r.t. physical coordinate y
%  nnel - number of nodes per element

%  dhdr - derivative of shape functions w.r.t. natural coordinate r
%  dhds - derivative of shape functions w.r.t. natural coordinate s
%  invjacob - inverse of 2-D Jacobian matrix

%

for i=1:nnel
dhdx(i)=invjacob(1,1)*dhdr(i)+invjacob(1,2)*dhds(i);
dhdy(i)=invjacob(2,1)*dhdr(i)+invjacob(2,2)*dhds(i);
end
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function [kinmtpb]=fekinepb(nnel,dhdx,dhdy)

%
% Purpose:

%  determine the kinematic matrix expression relating bending curvatures
% to rotations and displacements for shear deformable plate bending

%

% Synopsis:

% [kinmtpb]=fekinepb(nnel,dhdx,dhdy)

%

% Variable Description:

% nnel - number of nodes per element

%  dhdx - derivatives of shape functions with respect to x

%  dhdy - derivatives of shape functions with respect to 'y

%

for i=1:nnel
i1=3-1)*3+1;

12=i1+1;

13=12+1;
kinmtpb(1,i1)=dhdx(i);
kinmtpb(2,i2)=dhdy(i);
kinmtpb(3,i1)=dhdy(i);
kinmtpb(3,i2)=dhdx(i);
kinmtpb(3,13)=0;

end a

function [kk]=feasmbl1(kk k,index)
%
% Purpose:

%  Assembly of element matrices into the system matrix
%

% Synopsis:

% [kk]=feasmbl1(kk,k,index)

%

% Variable Description:

%  kk - system matrix

% k -element matri

% index - d.o.f. vector associated with an element

%o

edof = length(index);
for i=1:edof
ii=index(i);
for j=1:edof
Ji=index(j);
kk(ii,jj)=kk(ii,jj)+k(.));
end
end
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function [kinmtps]=fekineps(nnel,dhdx,dhdy,shape)

%
% Purpose:

%  determine the kinematic matrix expression relating shear strains
%  to rotations and displacements for shear deformable plate bending
%

% Synopsis:

%0 [kinmtps]=fekineps(nnel,dhdx,dhdy,shape)

%

% Variable Description:

%  nnel - number of nodes per element

%  dhdx - derivatives of shape functions with respect to x

%  dhdy - derivatives of shape functions with respect to y

%  shape - shape function

%

for i=1:nnel
11=(-1)*3+1;

12=11+1;

13=i2+1;
kinmtps(1,il)=-shape(i);
kinmtps(1,i3)=dhdx(i);
kinmtps(2,i2)=-shape(i);
kinmtps(2,i3)=dhdy(i);
end

function [index]=feeldof(nd,nnel,ndof)
%
% Purpose:

%  Compute system dofs associated with each element

%

% Synopsis:

%  [index]=feeldof(nd,nnel,ndof)

%

% Variable Description:

%  index - system dof vector associated with element "iel"

%  nd - nodal vector whose system dofs are to be determined
%  nnel - number of nodes per element

%  ndof - number of dofs per node

%

edof = nnel*ndof;
k=0;
for i=1:nnel
start = (nd(i)-1)*ndof;
for j=1:ndof
k=k+1;
index(k)=start+j;
end
end
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C MAIN POST-PROCESSING PROGRAM

clear

%

%

% This program will load the system mass and stiffness matrices

% from file sys_mat.mat. It solves the eigenvalue problem

% to get the natural frequencies and the modeshapes.

% Convolution is used to solve for the modal solution q(t).

%o It solves for x(t) at all nodes then calls set.mat to

% pick out the response at the analysis set. From this it

% back-expands the aset into the full solution using Guyan and

% - IRS transformation matrices. It can plot the modeshapes,

%o time-histories of each solution and the error between

% the actual response and the Guyan/IRS models.

%

% Written by Scott Waltermire
% Get the global mass and stiffness matrices

load sys_mat;

sdof=108;

% Create Blast Forcing Function

plotit = 1; % plotit=1 plots forcing function
Fo = 2000; % amplitude of forcing function
time = 0:.01:3; % time step

[f_of_t] = fBlastForcing(Fo,time,plotit); % function to solve for f(t)

F = zeros(sdof,length(time));

% initialize system force vector

F(63,)) =f_of _t; % place f(t) at the proper node

% Solve and Sort Eigenvalues/Modeshapes

[phi,lam]=eig(mm\kk);
mtilda=phi'*mm*phi; % mass normalize

% loop to mass normalize the modeshapes

for i=1:length(mm)
phi(:,1)=phi(:,i)* 1/(sqrt(mtilda(i,i)));

end

% loop to pick out the natural frequencies

for j=1:length(mm)
ev(j):lam(j ’j);

end

[lam,p]=sort(ev); % sort the natural frequencies

b4

53




phistar=phi;

% loop to sort the eigenvectors in the same manner
% as the natural frequencies

for k=1;length(mm)
phi(:,k)=phistar(:,p(k));
end

wn=real(sqrt(lam));
omega=real((sqrt(lam)/(2*pi)))’; % convert wn to hertz
phi = real(phi);

% create modal_F and use proportional damping

modal_F = phi*F;
zeta = .02;

% Convolution to solve for q(t) using Trapezoidal rule

dt = .001;
fori=1:108

wd(i) = wn(i)*sqrt(1-zeta’r2);

h = 1/wd(i)*exp(-zeta*wn(i)*time).*sin(wd(i) *time);
F = modal_F(,:);

[convXY] = fconvTrap(F,h,dt);

q(,:) = convXY;
end

% Plot Modeshapes

num_mode_shape=10;

for i=1:num_mode_shape
phi_mode=real(phi(:,i));
phil=(phi_mode(3:3:18))";
phi2=(phi_mode(21:3:36))';’
phi3=(phi_mode(39:3:54))';
phi4=(phi_mode(57:3:72))";
phi5=(phi_mode(75:3:90))';
phi6=(phi_mode(93:3:108))";
phi_mesh=[phi1;phi2;phi3;phi4;phi5;phi6];
surfc(phi_mesh)
shading interp
grid
pause

end
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% Convert back to physical Coordinates
resp = phi*q;

% Solve for T_static and T_irs

load set; % aset/oset file
% functions to solve for Guyan and IRS
% transformation matrices.

[kstat,mstat,T_static] = fstatic_tam(kk,mm,oset,aset);
{kirs,mirs,T_irs] = firs_tam(kk,mm,oset,aset);

%
% Load Guyan Transformation matrix
% and determine xa and xo

%

for i = 1:length(aset)
xa_g(i,:) = resp(aset(i),:);
end

% Back expand the guyan aset time histories
% into the full response

x_g="T _static*xa_g;
xo_g = x_g(1:sdof-length(aset),:);
xa_g = x_g(sdof-length(aset)+1:sdof,:);

% Now re-sort xa_g and xo_g

for i=1:length(aset)
xol_g = xo_g(1:aset(i)-1,:);
x02_g = xo_g(aset(i):length(xo_g(:,1)),:);
xol_g = [xo0l_g;xa_g(i,)];
xo_g =[xol_g;xo02_g];
end
X_g=1X0_g;

%
% Load IRS Transformation matrix
% and determine xa and xo

%

for i = 1:length(aset)
xa_irs(i,:) = resp(aset(i),:);
end
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% Back expand the irs aset time histories
% into the full response

x_irs = T_irs*xa_irs;
xo_irs = x_irs(1:sdof-length(aset),:);
xa_irs = x_irs(sdof-length(aset)+1:sdof:);

% Now re-sort xa_irs and xo_irs

for i=1:length(aset)
xol_irs = xo_irs(1:aset(i)-1,:);
X02_irs = xo_irs(aset(i):length(xo_irs(:,1)),:);
xol_irs = [xol_irs;xa_irs(i,:)];
Xo_irs = [x01_irs;x02_irs];
end
X_irs = xo_irs;

% Ignore all rotations and plot response
% in the z-direction

resp = resp(3:3:sdof,:);
resp_g = x_g(3:3:sdof,:);
resp_irs = x_irs(3:3:sdof,:);

for i=1:36

figure(1)
plot(time,resp(i,:), r-." time,resp_g(i,:),'y");
xlabel('Time (sec)");

ylabel('Displacement (in)");

title('Time History");

figure(2)

~ plot(time,resp(i,:), r-." time,resp_irs(i,:),'y");
xlabel("Time (sec)");

ylabel('Displacement (in)");

title('Time History');

pause
end

close(1)
close(2)
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%
% Find the error between the true response and
%o the Guyar/IRS back-expanded response

%

for i = 1:length(time)

xg_err(:,i) = abs(resp_g(:,1) - resp(:,i));
xirs_err(:,1) = abs(resp_irs(:,1) - resp(:,1));
end

fori=1:36

xg_error(i) = max(xg_err(i,:));
xirs_error(i) = max(xirs_err(i,:));

end

xg_errorl = xg_error(1:6);
xg_error2 = xg_error(7:12);
xg_error3 = xg_error(13:18);
xg_errord = xg_error(19:24);
xg_error5 = xg_error(25:30);
xg_error6 = xg_error(31:36);

xg_error = [xg_errorl;xg_error2;xg_error3;xg_error4;xg_error5;xg_error6];

figure(1)

surf(xg_error);

shading interp

grid

xirs_errorl = xirs_error(1:6);

xirs_error2 = xirs_error(7:12);

xirs_error3 = xirs_error(13:18);

xirs_errord = xirs_error(19:24);

Xirs_errorS = xirs_error(25:30);

xXirs_error6 = xirs_error(31:36);

Xirs_error = [xirs_error];xirs_error2;xirs_error3;...
Xirs_errord;xirs_errorS;xirs_error6];

figure(2)

surf(xirs_error);

shading interp

grid

save modal_info resp resp_g resp_irs time
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D.

FUNCTIONS CALLED BY MAIN PROGRAM

function [f_of_t] = fBlastForcing(Fo,time,plotit);

%
%
%
%
%
%o
%
%
%
%
%
%o
%
%
%

%

This function returns a forcing function which is
a "blast” function.

F(t) = Fo * (exp(-at) - exp(—bt) )

where a and b are constants which shape the blast,
and Fo is the amplitude of the blast.

The variable "plotit" is a switch which if set = 1 will
cause the f(t) to be plotted, if set to anything else
will not plot.
written by J.H. Gordis

Choices: sine blst step

type = 'blst’;

if type == 'blst’;

disp(' Blast forcing used...")

a= 100.0;

b = 300.0;

f_of_t =Fo * ( exp(-a*time) - exp(-b*time) );

elseif type == 'step';

%

disp(' Step forcing used...")
f_of_t = Fo * ones(size(time));

elseif type == 'sine’;

%

disp(' Sine forcing used...")
W =35; % Hertz
f_of_t = Fo * sin(2*pi*W*time);

end;

if plotit == 1;

figure(9)
plot(time,f_of_t);grid
pause
clf

end

% End function.
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function [convXY] = fConvTrap(x,y,dt);
%
% Usage: [convXY] = fConvTrap(x,y,dt);

%

% This function performs the convolution integral calculation
%

%o tau=t :

% convXY(t) = S x(t-tau) y(tau) d tau

%o tau=0

%

% using the trapezoidal rule.

% The function is passed the vectors x(t) and y(t)
% and the sample spacing (time step) dt.

%0

% x =vector of lengthn

% 'y =vectorof lengthn

% dt =sample spacing (i.e. delta_t).

% written by J.H. Gordis
%
if size(x) == size(y); % Vectors the same size. Perform convolution.

(’]

convXY = zeros(size(x),1);

for icnt_step = 2 : length(x);
[wts] = fTrapzWts(icnt_step);
if size(x,1) ~= size(wts,1);
- Wits = wts';
end
convXY (icnt_step) = dt * sum(wts .* fliplr(x(1:icnt_step)) .* y(1:icnt_step) );
end;

elseif size(x) ~= size(y) & length(x) == length(y); % Vectors are transposed. Don't

perform convolution.
%

disp(' Error in fConvTrap. Transpose one vector and try again.")
disp(sprintf(’ Size(x) %31',size(x)))
disp(sprintf(' Size(y) %3i',size(y)))

elseif size(x) ~= size(y) & length(x) ~= length(y); % Vectors different sizes. Don't

perform convolution.
%

disp(' Error in fConvTrap. Vector not the same size.")
disp(sprintf(’ Size(x) %3i',size(X)))
disp(sprintf(' Size(y) %31',size(y)))

end;
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%

function [kstat,mstat,T_static]=fstatic_tam(k,m,oset,aset)

%

% this function returns the statically reduced stiffness
% and mass matrices, given the unreduced couterparts.
% Care must be taken that the aset and oset vectors correspond

% with the existing arrangement of k and m.

% k and m are UNPARTITIONED matrices.

%

%

aset_size=length(aset);

%

kaa=k(aset,aset);
kao=k(aset,oset);
koo=k(oset,oset);
koa=kao';

cleark;
k=[koo,koa;kao,kaa];

%

maa=m(aset,aset);
mao=m(aset,oset);
moo=m(oset,oset);
moa=mao';

clear m;
m=[moo,moa;mao,maa};
%

t_static=-koo\koa;

T_static = [t_static;eye(aset_size)];
%

kstat=T_static'*k*T _static;
mstat=T_static'*m*T_static;
%

% end function fstatic_tam

written by J.H. Gordis
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%

function [kirs,mirs,T_irs]=firs_tam(k,m,oset,aset)

%

% this function returns the IRS reduced stiffness

% and mass matrices, given the unreduced couterparts.
% Care must be taken that the aset and oset vectors correspond
% with the existing arrangement of k and m.

% k and m are UNPARTITIONED matrices.

%o written by J.H. Gordis
aset_size=length(aset);

%

kaa=k(aset,aset);

kao=k(aset,oset);

koo=k(oset,oset);

koa=kao';

clear k;

k=[koo,koa;kao,kaa];

%

maa=m(aset,aset);

mao=my(aset,oset);

moo=m(oset,oset);

moa=mao';

clear m;

m=[moo,moa;mao,maal;

%

t_static=-koo\koa;

T_static = [t_static;eye(aset_size)];

%

kstat=T_static'*k*T_static;
mstat=T_static'*m*T_static;

%
tirs=t_static+inv(koo)*(moa+moo*t_static)*inv(mstat)*kstat;
T_irs=[tirs;eye(aset_size)];

%

kirs=T_irs'*k*T_irs;

mirs=T_irs"*m*T_irs;

%

% end function firs_tam
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%
%

% File holding the dof for the analysis set (aset)
% and the omitted set (oset)

%

% Saved to a file called set.mat

%

%

aset = [3 18 93 108];

coset=[124567891011121314151617 ...

192021 2223 24 2526 27 28 29 30 31 32 33 34 3536 37 38 39 ...
4041 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 ...
62 63 64 65 66 67 68 69 70 71 7273 747576 7778 79 80 81 82 ...
83 84 8586 87 88 89 90 91 92 94 95 96 97 98 99 100 101 102 ...

103 104 105 106 107];

save set aset oset

% Program will animate the full-order response
% by loading a .mat file called modal-info

clear;
load modal_info;
clear resp_g resp_irs

% make movie

movie_fig = figure('position',[ 100 200 300 200]);
M = moviein(200);
[x,y] = meshgrid([-5:2:5]);

fori=1:200

resp_t = resp(:,i);

respl = (resp_t(1:6))";

resp2 = (resp_t(7:12))’;

resp3 = (resp_t(13:18))";

resp4 = (resp_t(19:24))";

respS = (resp_t(25:30))";

resp6 = (resp_t(31:36))";

z = [respl;resp2;resp3;resp4;respS;resp6];
surf(x,y,z);
shading interp
gnd;
axis([-55-55-4.6));
view([45 45 10])
zlabel('disp (in.)");
M(:,i) = getframe;
end
pause
movie(M,0);
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% Program will animate the plate response found
%o by the static reduction method. It loads the .mat
% file called modal_info

clear;
load modal_info;

clear resp resp_irs
resp = resp_g;

% make movie of guyan response

movie_fig = figure(‘position’,[100 200 300 200]);
M = moviein(200);
[x,y] = meshgrid([-5:2:5]);

count = 1;
for1=1:200
resp_t = resp(:,i);
respl = (resp_t(1:6))’;
resp2 = (resp_t(7:12))";
resp3 = (resp_t(13:18))’;
resp4 = (resp_t(19:24));
resp5 = (resp_t(25:30))';
resp6 = (resp_t(31:36))";
z = [resp1;resp2;resp3;resp4;resp3;resp6];
surf(x,y,z);
shading interp
grid;
axis([-55-55 -4 .6));
view([45 45 10])
zlabel('disp (in.)");
title(' Animation by Guyan Back Expansion’);
M(:,count) = getframe;
count = count+1;
end

pause

movie(M,0);
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%

% Program to animate the plate response found

% by the IRS reduction method. Loads the .mat file
% modal_info

%

clear;
load modal_info;

clear resp resp_g
Iesp = resp_irs;

% make movie of guyan response

movie_fig = figure('position’,[100 200 300 200]);
M = moviein(200);
[x,y] = meshgrid([-5:2:5));

count=1;
fori=1:200
resp_t = resp(:,i);
respl = (resp_t(1:6))";
resp2 = (resp_t(7:12))";
resp3 = (resp_t(13:18))';
resp4 = (resp_t(19:24))";
resp5 = (resp_t(25:30))";
resp6 = (resp_t(31:36))';
z = [resp1;resp2;resp3;resp4;resp5;resp6];
Surf(X,yaZ);
shading interp
grid;
axis([-55-55-4.6));
view([45 45 10])
zlabel('disp (in.)");
title('Animation by IRS Back Expansion');
M(:,count) = getframe;
count = count+1;
end

pause

movie(M,0);
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